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ABSTRACT

The existence and uniqu ness of viscosity solutions of possible degenerate

elliptic equations in R is considered. For example, the equations treated

include ones of the form - "

u~ +1 H(Du) - Au =f(x) in R

where > ) 0 and Du is the gradient of u, as well as fully nonlinear

generalizations of this equation. Results are obtained which relate growth

and continuity properties of the nonlinearity H(p) and the forcing term f(x)

and (sometimes sharp) uniqueness classes for solutions. Existence is proved

in the uniqueness classes. / /£
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EXISTENCE AND UNIQUENESS VISCOSITY SOLUTIONS OF
DEGENERATE QUASILINEAR ELLIPTIC EQUATIONS IN RN

Michael G. Crandall*, Richard Newcomb* and Yoshihito Tomita

Introduction

In this paper we prove some uniqueness and some existence theorems for solutions

of quasilinear (possibly degenerate) elliptic equations of the form

(E) u + H(x,Du) - Pu = 0 in R,
N 2

where Du = (u x,-.*,u ) and the linear differential operator P =I p. Wi(x) .x.

has continuous coefficients Pi,j which satisfy

(P) (pi, (x)j = (Pj ix) and 0 L Pi,j(x) j -C A1 for x, R

for some constant A. The function H:e x RN + R is assumed to be continuous

throughout this paper. Roughly speaking, we are interested in the interaction between

some structure properties of H and the questions of existence and uniqueness. We will

consider three different restrictions on H: Either H is Lipschitz continuous in p,

i.e. there is a constant L such that

(HI) IH(x,p) - H(x,q)l 4 Lip - qj for x,p,q c

or H is uniformly continuous, i.e. there is a modulus of continuity m such that

(H2) IH(x,p) - H(xq)l 4 m(Ip - qj) for x,p,q RN,

or H behaves like a power of Ipl, i.e. there is a constant K and an m > 1 such that
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(H3) IH(x,p) - H(x,q)l 4 K(Iplm -l + jqjM + ')lp - qj for x,p,q C RN.

Suppose u is a subsolution of (E) (that is, u + H(x,Du) - Pu C 0 in RN) while v is

a supersolution. In each of the three cases above we will give essentially optimal

conditions on the growth of (u - v) which will guarantee that the comparison result

u < v holds in le (and hence u = v if both are solutions). We will need to assume

some technical restrictions on the x dependence of the coefficients of P and H(x,p).

These are formulated precisely in Section 1 and vary from case to case. At the moment

we will merely refer to these conditons as (TC) and note that (TC) holds if P is

independent of x and H is separated, i.e. H(x,p) = H0 (p) - f(x) is the difference of a

function of p and a function of x.

We will prove that if (TC) holds then:

(i) If (Hi) holds,

-L + (L2 + 4A)1 /2  A(N-1)a
(1) 2A b L + 2aA

and

(2) lir sup (u(x) - v(x)) + e - a l x l lIl b = 0

lxi +
then

(3) u 4 v in le.

(ii) If (H2) holds and

(4) lim sup (u(x) - v(x))+e-clxi = 0 for every c > 0,

then (3) holds.

(iii) If (H3) holds, v is locally Lipschitz continuous and

(5) lim essential sup (lDv(x)l + ((u(x) - v(x)) Ixll)lxlm - 1 = 0
R~a* lxj ' R

then (3) holds. The same result holds if u is locally Lipschitz continuous and Dv is

replaced by Du above.

The reader will note that we have not yet stated the notion of solution assumed

above and that the regularity "v is locally Lipschitz continuous" is assumed as an

extra condition in (iii) above. That is because we will be dealing with "viscosity
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solutions" in what follows and these solutions may be merely continuous functions. The

notions of viscosity subsolutions, supersolutions and solutions are appropriate notions

for second order equations F(x,u,Du,D 2u) = 0 where the equation is given by a functionN(
F: RN x R x RN x SN ,9 R,

where 0 is the set of symmetric NxN real matrices and F is nondecreasing in r e R and

nonincreasing in A c N when SN carries its natural order. We recall these viscosity

notions in Section 1. To emphasize this point, the reader may observe that if P = 0

and H(x,p) = H(x,0) is independent of p above, then all assumptions (including (Hi),

(H2) and (H3)) are satisfied provided H(x,0) is continuous and, moreover, u = -H(x,0)

is a solution of (E) which may be nowhere differentiable. In fact, our comparison

results hold for suitable classes of fully nonlinear equations F = 0 as is explained at

the end of Section 1. The question of existence is naturally more delicate and we

obtain model results for each case in Section 2. In this regard, let us mention that

the proof of Theorem 5 concerning the case (H3) is, perhaps, unusual. If the

nonlinearity H(x,p) is a pure power jplm and, for example, P is the Laplacian, there is

a great deal of information about the corresponding equation to be found in Lions [15]

and Lasry and Lions [14]. However, we do not assume any coercivity of the nonlinearity

here.

We complete this introduction with some remarks. Uniqueness results for viscosity

solutions for first-order partial differential equations were first obtained in M. G.

Crandall and P.-L. Lions [6]. See also Crandall, Evans and Lions [5]. Soon after this

the first results for the natural extension of this notion to second order equations

were obained in P.-L. Lions [16] where, among other things, it is shown that the value

function for some stochastic control problems is the unique viscosity solution of the

associated Hamilton-Jacobi-Bellman equation.
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More recently several papers treating viscosity solutions for second-order partial

differential equations by analytic methods appeared. We mention the work S. Aizawa and

Y. Tomita [2] in which some quasilinear elliptic equations are treated, the fundamental

advance to fully nonlinear nonconvex elliptic equations made by R. Jensen [11], the

subsequent important work by H. Ishii (9] as well as the improvement in method by R.

Jensen, P.-L. Lions and P. E. Souganidis [13]. Most recently, the general situation

has been illuminated by H. Ishii and P.-L. Lions in [10] as well as Jensen [12]. The

uniqueness problem for unbounded viscosity solutions was treated in the space of

continuous functions on RN which grow at most linearly as lxi + - in (2] and [9].

Our uniqueness and existence results for (E) are in classes of continuous functions

on RN which grow superlinearly as lxi + -, extending some results previously

obtained for first-order equations in Crandall and Lions [7] and Ishii [8]. By relying

on the results of [10] mentioned above, our uniqueness results may be proved by simple

nearly classical arguments and our proofs parallel arguments in [7].

Section 1. Preliminaries and Comparison Theorems.

We begin with some remarks on the notion of viscosity solutions of second order

equations in the form which we will use it. Since viscosity solutions are the

principal notion of solution we will use, we will refer to them merely as solutions.

Let a be an open subset of R and u:fl + R. We will need the following:

Definition 1: For x e

u(yl-u(x) - (p,y-x) - (Aly-xl,y-x)
1

D2 "+u(x) = {(p,A) c RN x SN:lim sup u 0 1
y~x ly _ x12

and 2 '-u(x) -(D

In the above definition (,G) is the Euclidean inner-product on RN, Let

F: lex R x Ix SP+Rbe elliptic, i.e.

F(x,r,p,A) is nonincreasing in A,

and nondecreasing in r. One can now define:
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Definition 2: Let u: t + R: Then u is a subsolution (respectively, supersolution) of

F - 0 in n if u is upper-semicontinuous (respectively, lower-semicontinuous) and

F(x,u(x),p,A) 4 0 (respectively, F(x,u(x),p,A) > 0) for all x c a and (p,A) C D2 ,+u(x)

(respectively, (p,A) E D2'-u(x)). Finally, u is a solution of F = 0 in n if it is both

a subsolution and a supersolution in n.

We remark that these notions coincide with those used in [10], [11] as applied to

continuous functions. However it is common and sometimes useful to define a function

which is not upper-semicontinous to be a subsolution if its upper-semicontinous

envelope is a subsolution, etc.

We will use the notation

(1.1) BR = {x 1 R4: jxj 4 R).

The technical conditions (TC) involve the following conditions:

(TC1) The nonnegative square root (sii (x)) of the matrix (pi,j(x)) is Holder

continuous with exponent 6 on each compact set.

(TC2) For each R > 0 there is a modulus of continuity wR such that

IH(x,p) - H(y,p)l 4 wR(1X - yj(1 + Ipl))

for (x,y,p) C BR x BR X Re.

See the end of this section for remarks on variants of these conditions. We begin

by formulating results in the various cases. For the case (HI) in which H is Lipschitz

continuous in p we have:

Theorem 1: Let (Hi) and (TC1) hold. Let u be a subsolution of (E), v be a

supersolution of (E) and (1) and (2) hold.

(i) If e - I and (TC2) holds, then (3) holds.

(ii) If one of u or v is Lipschitz continuous on bounded sets and 1/2 < 0, then (3)

holds.

For the case (H2) in which H is uniformly continuous we have:

Z6
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Theorem 2: Let (H2) and (TC1) hold. Let u be a subsolution of (E), v be a

supersolution of (E) and (4) hold.

Ui) If 8 - I and (TC2) holds, then (3) holds.

(ii) If one of u cr v is Lipschitz continuous on bounded sets and 1/2 < 8, then (3)

holds.

Finally, for the power-like case (H3) we have:

Theorem 3: Let (M3) and (TC1) hold with 0 > 1/2. Let u be a subsolution of (E), v be

a locally Lipschitz continuous supersolution of (E) and (5) hold. Then (3) holds.

Moreover, the same result is true in u is locally Lipschitz continuous and (5) holds

with u in place of v.

The basic strategy in the proofs of all three results is the same. In its

simplest form it runs as follows: For each R > 0 we construct a function v + zR on BR

with the properties

(1.2) v + zR is a supersolution of (E) on l and u(x) 4 v(x) + zR(X) for x c 3BR

and

(1.3) lim z RX) = 0 for x e R.

By comparison on bounded sets (see the remarks on extensions and variants in [10]) we

conclude from (1.2) that

(1.4) u(x) 4 v(x) + zR(x) for x c BR

and then from (1.3) and (1.4) we conclude that (3) holds. The proofs of Theorems 1 and

3 run exactly as described, while Theorem 2 uses a slight adaptation.

Proof of Theorem 1. Let w C C2(0). We first determine sufficient conditions for

v + w to be a supersolution of (E). Let

N
(1.5) F(x,r,p,A) r + H(x,p) - . pi'j(x)ai,j where A - (ai).

i,j=1 I ~

Since w is C2 , we have
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(1.6) D2 '-(v + w)(X) - D2'-v(x) + (Dw(x),D2w(x))

where

D2w(x) = (w xW).

Suppose (p,A) c D2'-(v + w)(x); then by (1w6) p = p0 + Dw(x) and A =A + D2W(x) where

(p0,A0 ) c D
2 '-v(x). Suppose now that w is convex so that D 2w(x) > 0. We now adopt the

notational convention that P(x) stands for the matrix (Pi,j(x)). The condition (P)

states that P(x) and AI - P(x) are nonnegative. Hence if w is convex (so that D2w(x)

is nonnegative) we have trace((AI - P(x))D 2w(x)) > 0, which amounts to

(1.7) AAw(x) > (Pw)(x)

where Pw is the differential operator P applied to w. In view of the form (1.5) of F,

(HI) and (1.7) we then have

(1.8) F(x,v(x) + w(x),p,A) > F(x,v(x),p 0,A0 ) + w(x) - LIDw(x)I - Aw(x).

Since v is a supersolution we conclude that v + w is also a supersolution if

(1.9) w is convex and w(x) - LIDw(x)I - AAw(x) > 0 in 0.

We seek the radial solution of (1.9) of fastest growth. If w(x) = G(IxI) where G is a

nondecreasing function (1.9) becomes

(1.10) G(r) - (L + A(N - 1 ))G,(r) - AG"(r) > 0r

It is easy to see that if we insert a formal expansion

ar
(1.11) G(r) e_

r j-1 r

in the left-hand side of (1.10) with a and b given by (1), then the coefficients cj are

uniquely recursively determined by the requirement that the resulting formal expansion

is identically zero. The theory of irregular singular points (e.g., [3]) then asserts

that there is a genuine solution of the equality corresponding to (1.10) which has the

asymptotic expansion (1.11) near r - -. (See Caffarelli and Littman [3] and the

references therein concerning the case L - 0). Alternatively, it is possible to show

that

7
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ar
G(r) b ( + log(r)

r

solves (1.10) in a neighborhood of -. These positive convex solutions of (1.10) near

- may be extended to a function G on [0,-) with G'(0) = 0 in any convex way and then

G(r) + C will satisfy (1.10) everywhere as soon as C is sufficiently large. We

conclude that there is a positive convex radial solution w(x) - G(Ixj) of (1.9) which

satisfies

1.13)li w(x)e-a lx l x b

To complete the proof of Theorem 1, set

(1.14) a(R) - sup (u(x) - v(x))
Ixl=R

and

(1.15) zW(x) = G(R) GIIx "

From the above considerations, v + zR and zR have the properties (1.2) and (1.3) (since

a(R)/G(R) + 0 as R + - by (2)) and the proof is complete.

Remark on the sharpness of Theorem 1: We noted in the course of proof that there is a

radial solution of the equation corresponding to (1.9) (and not just the inequality)

with an expansion of the form (1.11). As above, we may extend this to a subsolution of
I

the equation corresponding to (1.9) in all of SP and this subsolution will not lie ,

below the identically zero solution. Hence the growth condition is sharp in this

sense.

Proof of Theorem 2. The hypothesis (H2) implies that for every e > 0 there is a

constant L such that

(1.16) IH(x,p) - H(x,q)l 4 LIjp - qji + t for x,p,q c RN.

The analysis above applied in this situation shows that v + w is a supersolution of (E)

on IN if

w is convex and w(x) - LlDw(x)l - A^w(x) ) e in le

so if we put
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bz (x) = (R) GMRlS) G( Ixl) +ZR(X G(R)

where G is as constructed above for L L C we will have (1.4). Letting R + co and

invoking (4) yield u < v + e. Since c > 0 is arbitrary, we are done.

Proof of Theorem 3: Again we seek a supersolution of (E) of the form v + w. We note

first that (5) implies that for each e > 0 there is C such that

(1.17) IDv jxl 1 + C a. e. on R

where

(1.18) m f m/(m-11.

Since v is locally Lipschitz, if (p0'A) c D2'v(x), (1.17) implies

1pol 4C x1 + C'.

Since (m - 1)(m* - 1) = 1 and e > 0 is arbitrary, we conclude that we can choose

numbers v, C > 0 such that

1.19) K lPoI -  v x 1 + C - K

and

(1.20) m < 1.

Using (1.19) one then sees that if F is given by (1.5), (H3) holds, w is convex and

(p,A) e D2 '-(v + w)(x), then

'(x,v(x) + w(x),p,A) > w(x) - (vI + KlDw(x) m - 1 + C)1Dwj - A^w

so we want

(1.21) w(x) - (Vjxj + KIDw(x)l' ' + C)IDwl - Aw ;, 0 in R1 .

We try for a solution of (1.21) near * of the form w(x) = clxjtm  This amounts to

asking that
* * • *•

•* )mcm-l_ Cm .A((N - l)m + m (m- 1)
(1.22) cr' (1 - vm - K(m*)c r 2 ,'

r ~ r2

hold for large r. In view of (1.20), (1.22) will hold for large r when we choose c > 0

so that cm-IK(m )M < I - vm • Then w may be extended from the region where (1.22)

holds in a smooth convex way and increased by a constant so that w(x) - G(lxl) is

9
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radial, (1.21) holds everywhere and

G(R)
(1.23) lim .- c > 0.

R-- R7

Next we note that fw will also solve (1.21) if w does and 0 < y < 1. It now follows

from (5) that if zR is given by (1.15) and R is large, then v + zR is a supersolution,

we have (1.3) and (1.4), and the proof is complete.

Remark on the proof of Theorem 3: We did not use the full assumption (5) in this

2P.,
proof. We required only the bound (1.19) when (p0,A0 ) c D

2 'v(x) subject to (1.20) and

that

(1.23) lim (u(x) - v(x))+Ixl-m = 0

Ixkin
Remark on the sharpness of Theorem 3: As the reader had observed, neither the

statement or the proof of Theorem 3 had much to do with the nature of the second order

terms in (E). For first order equations the sharpness of this result is remarked in

[7] and [8]. Note also that the results in these works requires estimates on the local

Lipschitz behaviour of both both u and v. The presentation here corresponds to an

improvement of an argument of Newcomb (unpublished) allowing one of the functions u and S1.
I

v to be irregular. It may be thought that the presence of the second order terms

should improve the situation, but this is not so as the next example shows. Let

P-Mm (M 2 m. -2)1(m -1) + (N - )tpl i P *- * + m*(m - 1) 2.. + " m - 1) " ifII

m m m 2

2 *

H(p)-

-2 if 2p~m
* *- + Nm (m 1 - i)

2m (m - 1) 2(m- 1)
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Then

* * 1

-2 m if I

mllm

M + m 2 if lxI .

2(m - 1) m - 1

and u 2 = -Nm (m - 1) + (m - 2)/2(m - 1) are both solutions of

u + H(Du) - Au = 0

in RN with the growth IxIm*•

We end this section with several other remarks.

Remark on dependence on forcing terms: Suppose instead of (E) u is a solution of

u + H(x,Du) - Pu 4 f(x) and v is a solution of v + H(x,Dv) - Pv > g(x) where f and g

are continuous and one of the above results applies to (E) under growth assumptions

satisfied by u - v. Then u - sup(f(x) - g(x)) and v are sub and supersolutions of the

x
same problem and we conclude that

(1.24) u - v 4 sup (f(x) - g(x)) .

x
Remarks on the fully nonlinear case: We want to consider a general equation F = 0 and

N
keep in mind the special case F(x,rp,A) - r + H(x,p) - psi i.(xa where

i ,~ i'j

A - (ai,j). The conditions on F which correspond to (P), (HI) - (H3) are (Fl), (F2),

(F3) below. F is elliptic and for x,p,q c le, r e R, s o 0, A c N and B c SN+ (the

nonegative symmetric matrices) we have:

(Fi) F(x,r + s, p + q, A + B) > F(x,rp,A) + s - Liqi - Atrace(B),

(F2) F(x,r + s, p + q, A + B) > F(x,r,p,A) + s - m(lqI) - Atrace(B),

and

(F3) F(x,r+s,p+q,A+B) > F(x,r,p,A) + s - X(Iql'+Ipl-+l)Iql - Atrace(B).

It is clear that analogous uniqueness results to Theorems I - 3 hold for fully nonlinear
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equations with (Fl), (F2), (F3) in place of (HI), (H2), (H3) if one has comparison

results for the equations on balls.

Remark on the strictly elliptic case: We did not use any assumptions of nondegeneracy

of the second order operator P. If indeed the matrix P(x) is nonsingular for every x,

then the equation is strictly elliptic on bounded sets in the sense defined in Ishii -

Lions [10] and the technical conditions can be relaxed. The reader will be able to

formulate the required conditions upon perusing [10].

Section 2: Existence

The simplest method to obtain existence for (E) is Perron's. As applied here, it

works as follows: Suppose we can find a continuous supersolution I and a continuous

subsolution u such that >u and u - u)+ is bounded in such a way that a comparison

result (which varies from case to case) applies. Then it is known that

- n
u(x) = sup{v(x) : v is a subsolution of (E) and u 4 v c u on R

is (lower-semicontinuous and) a subsolution whose lower-semicontinuous envelope u, is a !p
supersolution. Since u - u* u - u we conclude that u 4 u*, so u = u and u is a

solution. For example, if (H2) holds, it is enough to produce u, u which such that (u -

U)+ has slower than exponential growth (i.e., (4) holds with u = , v = u). An easy

case in which we can do this is the following:

Proposition 4: Let (H2), (TC1) and (TC2) hold with 8 = 1. Suppose that there are

constants C, u > 0 such that

(2.1) IH(x,0)l C C(IxI U  + 1).

Then (K) has a solution u such that u/(1 + lxi") is bounded.

Proof. Let L be such that

(2.2) IH(x,p) - H(x,0)l < Ljpj + 1 for x,p e 1".

Then using (2.1) and (2.2) one sees immediately that a convex function ii(x) will be a

super-solution if

(2.3) U - LID j - MU > C(IxlU + 1) + I on RN.

12 I



RRVOW

Moreover, u(x) = (C + 1)lxIU satisfies (2.3) for large jxi. We extend this solution

from the neighborhood of - in which (2.3) holds in any smooth, radial and convex way to

all RN and then increase it by a constant so that (2.3) holds everywhere. A

(nonpositive) subsolution can be constructed in the analogous way and the proof is

complete.

Since (Hi) implies (H2), the above result applies when (Hi) holds as well.

However, we can do better. If (2.1) is relaxed to

aixi
(2.4) IH(x,O)I 4 C e for > 1

11ib+1+6 lxl

where a,b are given by (1) and 6 > 0 and still ask that (2.2) hold, then we can again

find suitable sub and supersolutions. Indeed, if 7 = G(r) is radial and convex, and

(2.2) and (2.4) hold, then it U is a supersolution if
ar

(2.5) G(r) - (L + N - I )G'(r) - G"(r) - C1 I > 0.
r r

As usual, it is enough to solve in a neighborhood of r We try G(r) = earr- (b+ 6/2 ), in

which case the left hand side of (2.5) becomes

(( +r 2 - A(U)(U+i) - C -ar b+( 6/2))arr
,p~ eb+(6/2) ((L + 2aA)5 - )u1r r (6/2 )  e-arrb(/)],

so (2.5) indeed holds in a neighborhood of -. A (nonpositive) subsolution of similar

form is constructed in the same way.

We turn to the question of existence under (H3). The situation is now quite

different, for the corresponding comparison result Theorem 3 requires that one of the

functions u or v admit a suitable estimate on its derivative and we cannot use Perron's

method as above. The proof below is interesting in that the unique solution produced is

not shown to be differentiable at all, indeed, we leave open the question of

regularity. We will give a model result for this case when (E) is simplified to the

problem

13



(E)' u + H(Du) - Pu - f(x)

which is free of x dependence except in the function f - in particular, we assume that P

has constant coefficients.

Theorem 5: Let H(p) satisfy (H3), P have constant coefficients, 1 < U < m and there be

a constant c0 such that

(2.6) If(x) - f(y)I -4c0R(U Nx - y• for xy c R ) 1.

Then (E)l has a unique solution u such that u(x)/(1 + IxJP) is bounded.

Proof: Let

T x = x if ix, 4 n ,

n x if Jxj > n
Tx ~x

be the radial projection of R on Bn and approximate (E)' by the problem

(2.7) U + H(TmDU) - PU = f(TnX)

where m, n > 0. (2.7) has a unique bounded solution U (in view of the constant sub and

supersolutions) by the discussion of the case (HI) above (as well as many other ways).

Moreover, for y c RN, U(o + y) solves the same problem with f(Tn (e + y)) in place of

Me)}, so by Remark 2 of Section I and (2.6)

(2.8) IU(x + y) - U(x}J 4 sup lf(Tn(x + y)) - f(Tn X)l 4 c0nU-1lyl

It follows that the first order sub and super derivatives of U are bounded by

c 0 n1, so if m is large un = U also solves

un + H(Dun ) - Pun - f(Tnx)-

We have begun indexing by n as we now want to show the un converge to a limit u with the

desired properties. Since it is easy to produce sub and supersolutions of (E'l which

are multiples of (I + Ix12 )p/2 there is a constant c such that

(2.9) lun(x)l < (c/2)lxl i for lxl 1.

From (2.8) (for un) we can also assume that
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(2.10) if (p,A) c D2 '-Un (x) then IP I c0

and using this in the usual way we find that if z is smooth then un + z is a

supersolution of (E)' on Bn if z is convex and

(2.11) z (KDzm -l + K(cn -1)m-1 + K)=DzI - AAz > 0 on Bn

Now we choose y so that

(2.12) y >

and consider the function

(2.13) z (x) = cn-Y(n (2 )j/m + IxI2 )Y/ 2 .n

Clearly zn is convex and smooth. Moreover, using (2.9), we see that

(2.14) Zn (x) Pu n(x) - uk(x)l for x c aBn and all k, n.

We also claim that zn satisfies (2.11) if n is large. The existence assertion will

follow from this, since once this last claim is verified comparison on Bn implies

un(x) - uk(x) < zn(x) in Bn for n < k

because the equations for un and uk agree on Bn if n 4 k. Moreover, the analogous

estimate from below is proved in the same way, so in fact

(2.15) lu n(x) - uk(x)I < zn(x) in Bn for n 4 k.

Finally, (2.12) is equivalent to V - y + Uy/m* < 0, which means that

(2.16) lir z (x) - 0 uniformly for bounded x
nw

so (2.15) implies that the un are Cauchy on bounded sets. Therefore the un converge

locally uniformly to the desired solution. Thus the proof of existence is complete once

we show that z - zn solves (2.11). To this end we write Zn (r) with the obvious meaning,

and calculate:

(2.17) zn(r) - cynu-y(n(2p/ m * ) + r2 ) (y/2 - 1)r,

(2.18) z"(r) - cynty(n (2u/ m * ) + r2) (y/2 - 2)(( 1)r2 + n(2U/m*).

From this we see that zn(r) is convex and nondecreasing, so zn(x) is convex. Hereafter

we let C denote various constants which vary from occurence to occurence in a harmless

15



way. Since U< m, 2u/m < 2and -.

n( 2p/m) +r2 < C2for r 4n

Thus, using (2.17),

(2.19) jDzn1 C CcnPrI on B.

and so

(2.20) K(jDz nIm-l + (COm-ln(PWl)(Ml1) + 1) 4 Cn(U1 1)(m1l) on Bn.

As regards Az n from (2.17), (2.18) we find

Az n = c-f(y-2)n) - (n (2UJ/m*) + IxjI 2)(y/2 - 2I1

+ cynW-YN(n (2 U/M + r2 )(y/ 2 - 1) 4 cn-~(2/* + r 2 ) (y/2 -

Or' Bn- Thus, setting

(2.21) 0-n(21U/m*) + IxI2,

we have

Z n - (KIDzntml + K(C 0 W-l1 1- + KflDznI - AAzn >

C. -gy - ~-1)(m-l)lDzj - Acn u-yg~y 2 - 1)

-cnW-YG(y-
2)/2(9 _ n(ij-1)(m-l)OI/2 - AC)

on B. n' ow

(2.22) e _ Cn(U-1)(ml1)91/2 _ AC >0

provided 0 1/2 is larger than the greatest root t 0 of the equation

- C(u-l)(m-l)t - AC - 0

which has the form

to- 1(Uj-)(M-l) + (Cn (uJ-1)(M-1)2 +4AC) 1/2  (U-l)(M-1)
2

However, from (2.21) we see that 01/ 2 ) n(U/m and from U, < M* it follows that

(- 1)(m - 1) 4/

so (2.22) holds on Bnif ni is sufficiently large. The proof of existence is complete.
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It remains to discuss the uniqueness. The uniqueness is in fact a consequence of

the above arguments, since if u is a solution of (E)' with the asserted growth, it

solves the same equation as u does on Bn and the estimates made above on un - uk apply

equally well to un - u. Thus u is the limit of the un, and the uniqueness follows.

Remarks on Theorem 5: The result may be extended to an equation u + H(x,Du) - Pu = f(x)

with x dependence in H with a similar proof if the local Lipschitz behaviour of H in x

is like that imposed on f(x) independently of p. We also note that the corresponding

existence result in [7] imposed a coercivity condition on H(p) from which the local

Lipschtiz behaviour was deduced. The proof in [7] and ours are totally distinct.
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